PERSIAN PLAGIARISM DETECTION USING SENTENCE CORRELATIONS

Muharram Mansoorizadeh and Taher Rahgooy Bu-Ali Sina University Hamedan, Iran

Outline

- Plagiarism Detection
- The Proposed Approach
- Results and Discussion

 Plagiarism: Publishing someone else's words/works/ideas as one's own words/works/ideas.

- Scientific Plagiarism: Plagiarism activities targeting scientific publications
 - Usually works and ideas are plagiarized.
- Our Focus: Scientific Plagiarism in Persian Documents

- Every scientific field has a specialized terminology
 - Shared vocabulary of related research communities
 - Published as specialized glossaries and dictionaries

- Authors must adopt this vocabulary to get their works published
 - Using uncommon words and phrases would make reviewers suspect plagiarism
 - An example in machine learning community:
 - Feature selection, Attribute elicitation, Choosing attributes, Characteristics extraction
- Automatic text analysis tools detect out of subject documents
 - Automatic topic detection, keyword extraction, and document clustering

- Mostly, lazy people do plagiarize or cheat
- They just alter first few paragraphs and sentences of each section

Algorithms, formulas, and equations are hard to change!

• References and bibliography remain the same with minor changes.

 Motivation: The plagiarized document would share important words, phrases and symbols with the original document

 The Idea: Use text similarity estimation and matching algorithms to retrieve susceptive cases

Documents are mapped to TF-IDF vector space and analyzed

- Document set(corpus) $D = \{d_1, d_2, ..., d_N\}, d_i$ is a document, N = |D|
- Vocabulary V ={ $t_1, t_2, ..., t_M$ }, the set of distinct terms in D, M=|V|
- Term Frequency of t_i in document d, $TF_i = \frac{F_i}{|d|+1}$
- Inverse Document Frequency of t_i , $IDFi = log(\frac{N}{N_i+1})$, N_i documents contain t_i
- TF and IDF combined as $TFIDF_i = TF_i . IDF_i$
- Document d is represented by vector v_{1xM} , where v(i) =TFIDF_i
- Similarity of two document vectors u and v is $cos(u, v) = \frac{u.v}{\|u\| \|v\|}$

The Proposed Approach

Construct similarity matrix and Threshold • S : Plagiarism Cases, R: Set of Detections, $S_R \subseteq S$ are cases detected by detections in R, and $R_s \subseteq R$ are the detections of a given s.

• precision
$$= \frac{|S \cap R|}{|R|}$$
, recall $= \frac{|S \cap R|}{|S|}$, f_measure $= 2 \frac{precision \cdot recall}{precision + recall}$

• granularity(S,R) =
$$\frac{1}{|S_R|} \sum_{s \in S_R} |R_s|$$
, $plagdet(S,R) = \frac{f_measure}{\log_2(1+gran(S,R))}$

Detection Results on Main Corpus

- The corpus: 5830 Documents, 4118 plagiarism cases
 - Simulated and artificially generated samples

Threshold	Precision	Recall	F-Measure	Granularity	Plagdet
0.4	91	81	86	3.86	0.39
0.5	82	93	87	4.48	0.35

Detection Results on User Corpora

- Five independent corpora
 - Diverse dimensions and qualities

	Niknam	Samim	Mashhadira jab	ICTRC	Abnar
Documents	3218	4707	11089	5755	2470
Plags	2308	5862	11603	3745	12061
PlagDet	0.3	-	0.13	-	0.27

Discussion and Conclusion

Straightforward approach for plagiarism detections

Motivated by the vocabulary limitations in scientific contexts

Reasonable performance in terms of precision and recall

- Easily scalable
 - Follows the architecture of modern information retrieval systems

Future Directions

More advanced preprocessing and filtering

- Semantic normalization of documents
 - Context vocabulary normalization

Topic based analysis

 Asghari, Habibollah, et al. "Algorithms and Corpora for Persian Plagiarism Detection.", In *Working notes of FIRE 2016 - Forum for Information Retrieval Evaluation*, Kolkata, India, December 7-10, 2016, CEUR Workshop Proceedings, CEUR-WS.org.

 Potthast, Martin, et al. "An evaluation framework for plagiarism detection." *Proceedings of the 23rd international conference on computational linguistics: Posters*. Association for Computational Linguistics, 2010.

Professors against plagiarism, <u>http://pap.blog.ir/</u> [last visited: jan 22 2017]